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Chapter 1

Research Project Overview

This Performance Technical Report is organized as follows.

Chapter 1 explains the problem addressed by this research project and provides an overview
of the grant purpose, problem statement, proposed solution, research objectives and
technical approach.

Chapter 2 describes the progress achieved to date for each of the different sensor types
that are of interest in this research project.

Chapter 3 gives the research plans for the next year for each of the sensor types of interest.

Appendices A, B and C elaborates technical details in order for this document to serve
as a self-contained reference. These appendices also contain example DSSA classifica-
tion results and a glossary of abbreviations.

1.1 Grant Purpose

The purpose of this ONR grant is to support the evaluation of the performance of a partic-
ular joint compression/classification algorithm called nearest neighbor residual vector quan-
tizer (NN-RVQ) classification on data obtained from a variety of sensors and applications.
NN-RVQ is based on a new mathematical development called direct sum successive approz-
imations (DSSA). DSSA is a technology invented! by the principal investigator that can be
used for vector quantization (V@) and pattern recognition. DSSA uses a data decomposition
process to construct structured codevectors and templates that can be efficiently searched
(in terms of computation and memory) in vector quantizers used for data compression, and
in nearest neighbor pattern recognition algorithms. The purpose of this grant is to assess
the performance of NN-RVQs when they are used for joint compression and classification of
various types of sensor data.

IpPatent No. 5,250,949, held in part by the principal investigator, and assigned to Brigham Young Uni-
versity, with derived intellectual property held by the Georgia Institute of Technology.
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1.2 Problem Statement

There are two underlying problems addressed by this research:

1. The Data Compression Problem

The lack of sufficient bandwidth required to transmit data at a high rate from a remote
sensor to the data user, or equivalently, the lack of sufficient computer memory required
to store large volumes of measured sensor data.

2. The Onboard Data Classification Problem

The excessive computational resources required for real time classification of data on-
board sensor platforms. The need for real time classification is motivated by the
requirements for an onboard prescreen capability, an onboard target recognition capa-
bility, or an onboard machine fault detection capability.

1.3 Proposed Solution

The proposed solution is to use a technique recently developed for the mathematical de-
composition and synthesis of sensor data in a joint compression and classification algorithm.
The new technique is called direct sum successive approzimation. DSSA can be used in a
type of data compression process called residual vector quantization (RVQ), and in a type
of data classification process called nearest neighbor residual vector quantizer classification.

1.4 Research Objectives

The primary object of this research is to determine the feasibility of performing joint com-
pression and classification on a variety of image and signal sensors using the DSSA algorithm
in nearest neighbor residual vector quantization classifiers. This contract has been structured
by ONR to permit flexibility as to exactly what sensors, data, and applications are evaluated
by GTRI. The use of DSSA for classification does not require feature extraction?. DSSA may
be incorporated into NN-RVQ classifiers in such a way that direct classification of data sam-
ples is possible. DSSA classifiers can be easily designed for a wide variety of data types—all
that is required is sample data of clutter and targets, or sample data of normal and faulty
machine state measurements. Thus the ease at which DSSA classifiers can be designed and
implemented allows a wide variety of sensors and associated data to be investigated in a cost
efficient manner. '

2This does not preclude the use of a DSSA system as a conventional discriminate that operates on a set
of extracted data features.




The specific objectives and tasks of this research program are to obtain data and evaluate
joint DSSA compression/classification on a variety of signal and image data sources. Candi-
date sensors include defense related imagery and signal data. Dual-use applications such as
computer assisted diagnosis and compression of medical mammography image data are also
candidates for study. GTRI will continue to be responsive to any directive from ONR as to
which data sets should be tested and evaluated in this research project (to the extent that
funding levels and data availability permit). The following list of candidate sensor types
have been identified, and research into DSSA processing of each of these types of data has
progressed to varying degrees at this point in this multi-year research program.

Sidescan Sonar Images

Sidescan sonar images are used for sea mine detection. A previous project® established the
feasibility of using DSSA for sea mine detection in sonar imagery. An objective of this
research is to investigate the feasibility of joint compression and classification of sidescan
sonar images communicated from remote unmanned underwater vehicles (UUV) to a receiv-
ing surveillance base station.

Acoustical Backscatter Signals

The use of acoustical backscatter has been proposed as a simple means of sea mine detection.
Another concurrent research program? is investigating the feasibility of using DSSA for
classifying backscatter data. An objective of this research is to explore the possibility of
using DSSA for joint compression and classification of acoustical time series data.

Machine State Status Signals

The use of machine state status signals has been proposed for determining the need for
condition-based maintenance (as opposed to scheduled maintenance). Examples of such data
include vibration and motor current time series data from sources such as helicopter gear
boxes, fire control and condensate pumps. An objective of this research is to investigate the
feasibility of classifying machine state time series data and explore DSSA data compression
possibilities for such signals.

3Contract N61331-93-K-0005, “An Initial Evaluation of a New Approach to High Resolution Sonar Im-
agery,” issued to GTRI by the Coastal Systems Station, Dahlgren Division of the Naval Surface Warfare
Center.

4Contract N61331-96-C-0027, “Continued Development of Unique Mathematical and Statistical Signal
Processing Algorithms for Detecting and Classifying Mines in Acoustic Backscatter,” issued to GTRI by the
Coastal Systems Station, Dahlgren Division of the Naval Surface Warfare Center.




Synthetic Aperture Radar Images

Synthetic aperture radar (SAR) images provide ground and sea surface surveillance regardless
of day, night and weather conditions. An objective of this research is to investigate the joint
classification/compression of SAR data for target detection and recognition. The results
of this research would be most applicable to remote sensing from unmanned aerial vehicles
(UAV) launched from either ground or ship base stations.

Electro-Optical Images

Possible classification tasks associated with electro-optical images include target detection
and land-use classification. An objective of this research is to investigate the joint com-
pression/classification of electro-optical (EO) images for one or more defense or dual-use
applications.

Infrared Images

Possible classification tasks associated with infrared images include target detection. An
objective of this research is to investigate the joint compression/classification of infrared
(IR) images for one or more applications.

Multispectral Images

Possible classification tasks associated with multispectral images include target detection
and land-use classification. An objective of this research is to investigate the joint compres-
sion/classification of multispectral (MS) images.

X-ray Images

A key to surviving breast cancer is early detection. Mammography X-rays are used to detect
microcalcifications, which are small (sometimes as small as 1/10th of a millimeter) calcium
deposits that may be an early indicator of malignant tumor growth. However, not all mi-
crocalcifications are detected by radiologists because of imperfections and limitations of the
human visual system. The proposed solution is to use a computer and a microcalcifica-
tion detection algorithm based on DSSA to cue radiologists to regions of the mammogram
that likely contain microcalcifications®. Since DSSA can also provide compression, an ob-
jective of this research is to determine the feasibility of joint compression/classification of
mammograms for storage in medical picture archival systems (PACs).

5This research was supported in part by GTRI internal research and development funds.




1.5 Technical Approach

The following technical steps are being used to achieve the research objectives for each sensor
type selected for testing and evaluation.

Task 1: Data Acquisition

The first step is to acquire sample data—this presents a challenge in some cases. The avail-
ability of sufficient amounts of sensor data and associated truth data (e.g., target locations,
machine state, etc.) has, and will, continue to influence the choice of which sensors are tested
in this research program.

Task 2: Test Plan Definition

The second step is to develop an acceptable test plan for the selected sensor data type for
evaluating NN-RVQ performance. These test plans are being developed using procedures
acceptable to the Navy. Possible methods include 1) the use of separate training and testing
subsets of the sensor data, and 2) the use of the entire sensor data set for training, and then
the use of alternative means in order to estimate NN-RVQ performance. These alternatives
include analytical estimates, bootstrapping, test sets where simulated noise has been added
to the sensor data, etc. Care should be taken to not over train the classifiers or vector
quantizers, since over training can bias measured performance results.

Task 3: DSSA Implementation

The third step is the adaptation of existing DSSA software developed by GTRI for im-
plementation of compression and classification algorithms for each sensor of interest. This
adaptation is rather straightforward, all that is required is modification of the software
input/output structures. This illustrates an advantage of the DSSA approach to pattern
recognition—feature definition and extraction are not required® in the classifier design pro-
cess. What is required, however, is a training process that uses data that has been preclassi-
fied (by human experts) for the generation of structured DSSA templates. Thus, DSSA has
two modes of operation: an off-line training mode for template generation and an on-line
classification mode for nearest neighbor pattern recognition.

Task 4: Template/Codevector Design

The fourth step is to select the key DSSA classifier parameters that are necessary for DSSA
implementation. These parameters include template (codevector) block size, the number of

6DSSA may be used with classification systems that do use extracted features.




DSSA stages, and the number of templates (codevectors) at each stage. Once reasonable (not
necessarily optimal) choices have been made for each these parameters, the data acquired
in Task are is used to form training data in accordance with the test plan of Task 2. This
training data are then used to generate vector quantizer codevectors and NN-RVQ classifier
templates.

Task 5: Performance Evaluation

The fifth step is to evaluate performance of the DSSA system in accordance with the test
plan defined in Task 2.

Task 6: Conclusions and Feasibility Assessment

The sixth step is to assess the performance results within the context of implementation
complexity. Implementation complexity is loosely quantified in this report as the number
of multiply-adds and memory locations required for the DSSA implementation. Feasibility
is judged if acceptable probability of detection rates and sufficient compression ratios are
obtained at “reasonable” implementation costs.




Chapter 2

Current Research Results

GTRI has obtained, to date, various amounts of six different types of sensor data: EO image
data, X-ray image data, side scan sonar image data, SAR image data, acoustical backscatter
signal data, and machine state signal data. However, some of these data sets are subject to
certain use restrictions that GTRI is in the process of clarifying and resolving. GTRI has
not obtained, to date, any data for infrared or multispectral image sensors.

The current progress, status and experimental results are summarized for each of these
sensors in the following sections.

2.1 Electro-Optical Images

Task 1: Data Acquisition—Initiated

In the data classification problem, several distinct classes or states of nature are known
to exist. Data influenced by these states are measured in an imprecise, noisy manner.
The problem is to correctly estimate the underlying state. DSSA provides a novel data
representation process that generates a successive approximation structure for sets of image
data grouped together into small blocks of pixels [1]. This research seeks to integrate DSSA
classification systems with DSSA compression systems. One type of sensor data of interest
is EO-imagery.

Figure 2.1 is an original aerial EO image of the Moffet Naval Air Station close to San
Francisco. Figures 2.2-2.4 show a DSSA generated representation sequence for this EO
image. These three figures show DSSA approximations to the original at various compression
rates. Note that it is reasonable to expect that the different airplanes on the airfield would
be recognized by a human observer at various compression ratios due to differences in the
corresponding levels of fidelity.

The possibility of using successive approximation data representations in a automated recog-
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nition process is a conceptually interesting problem. For instance, a decision system could
first attempt to classify data represented by a coarse approximation. If the classification
does not succeed with a high level of confidence, additional details are then added to the
data representation such that a more accurate representation is obtained. Then the decision
system tries once again to reach a classification decision with an acceptable level of confi-
dence. This process is repeated until the data are confidently classified. These figures of
the Moffet airfield show DSSA systems designed with the intent of data compression. GTRI
desires to integrate DSSA classification and compression into a single demonstration system
for EO-image processing, but GTRI does not possess an extensive set of EO imagery with
targets of interest to the Navy identified by ground truth data. However, GTRI does have
plans to generate a simple EO image demonstration using the Moffet Airfield image. Details
plans for completing Tasks 2-6 in relation to this EO image are given in the next chapter.

2.2 X-ray Images

Experiments were conducted on digitized mammogram images, which contain microcalcifi-
cations, an early indicator of breast cancer. The NN-RVQ was applied to this dual-use data
set as an algorithm for computer assisted detection (CAD) of breast cancer. Although, not a
primary interest of the Navy, this data set was readily available, and provided a synergistic
opportunity for exercising recent refinements to DSSA, and hence received the most atten-
tion in this initial phase of this ONR, grant. Furthermore, the extensive set of experiments
conducted with mammograms serves to illustrate the possibilities resulting from applying
DSSA to EO, IR, MS and SAR imagery.

X-ray Task 1: Database Acquisition—Completed

Forty digitized mammogram images were obtained from an Internet site (via anonymous
FTP from figment.csee.usf.edu) established with data acquired by Dr. Karssemeijer'. In-
formation that identified the locations of known microcalcification clusters contained in the
mammograms (truth data) was also obtained. Each of the mammograms contained various
numbers of clustered microcalcifications. A total of 96 microcalcification clusters identified
by radiologists are specified in the truth data.

X-ray Task 2: Test Plan Definition—Completed

Twenty-one of the mammogram images were used for generating training sets, and nineteen
mammograms were reserved for testing purposes to evaluate the performance of the DSSA
classifier.

!Department. of Radiology, University Hospital Nijmegen, PO Box 9101, The Netherlands, nicomb-
fys.kun.nl
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X-ray Task 3: DSSA Implementation—Completed

A mammogram block size of 5 x 5 pixels was selected for DSSA processing. Each 5 x 5 block
contains a total of 25 pixels, where the 8-bit intensity value of each pixel may be viewed as
providing a feature value in a composite 25-dimensional feature space.

A total of 902 microcalcification training blocks were extracted from the known 41 micro-
calcification clusters contained in the training images. Each training block was reflected and
rotated in eight ways (the eight symmetries of the square) to expand the size of the training
set. Thus, the final microcalcification training set contained 8 x 902 = 7,216 blocks.

X-ray Task 4: Template/Codevector Design—Completed

The microcalcification-block training set was used to design a 37-stage DSSA classifier, with
each stage consisting of 64 templates. The DSSA templates where then inserted into a
nearest neighbor DSSA classifier.

X-ray Task 5: DSSA Performance Evaluation—Completed

The performance of the DSSA classifier was evaluated by estimating the probability of de-
tections on the 19 mammograms retained for testing purposes. The output of the detector
was a colored detection map. Regions of the detection map without detections were colored
a light brown. Circles of various colors were drawn around each DSSA declared detection.
Both the size and color of the circle indicate the degree of confidence with which the DSSA
detection was declared: the larger the circle—the more confident the declaration; the cooler
the color—the more confident the declaration (see the printed results in Appendix A where
yellow, green, and blue indicate progressively more confident detections). The detection
maps also indicate the locations of the radiologist-identified microcalcifications with black
circles that enclose the human-detected locality of the microcalcifications.

The test images contained a total of 45 human-detected microcalcification clusters. Each of
the mammograms and resulting overlays are shown in Appendix A. A total of 39 out of the 45
events were detected with the DSSA algorithm, giving an estimated probability of detection
of 87%. Table 2.1 summarizes the detection results for each of the tested mammograms.

The false alarm rate varied greatly; some mammograms contained only a few false alarms
and other mammograms contained many (see the colored detection overlays). However, all
detections declared by the DSSA algorithm were displayed in these test results regardless
of the associated confidence level. Improved false alarm rates can be easily obtained by
not displaying the weaker detections, but at this stage of research, displaying all events
that the DSSA classifier found suspect is of interest. Furthermore, since there were no
images in the Nijmegen data base that did not contain microcalcifications, there are as yet
no estimated false alarm rates determined for mammograms that are known to be clear of
microcalcifications.

13




Mammogram Number of Number of Number of | Detection
Index Human-Detected | DSSA-Detected | DSSA-Missed | Percentage
Events Events Events Percent
cllc 1 1 0 100%
cllo 1 1 0 100%
cl2o 13 11 2 85%
cl3c 1 1 0 100%
cl3o 1 1 0 100%
clde 2 2 0 100%
cldo 2 2 0 100%
cl5e 1 1 0 100%
cl50 1 1 0 100%
cl6e 1 1 0 100%
cl6o 1 1 0 100%
cl7c 9 8 1 89%
cl8c 2 2 0 100%
cl8o 1 1 0 100%
cl8e 1 1 0 100%
cl9c 2 1 1 50%
cl9o 3 1 2 33%
c20c 1 1 0 100%
c2lo 1 1 0 100%

Table 2.1: X-ray Image DSSA Classification Results

X-ray Task 6: DSSA Feasibility and Practicality Assessment—Completed

Good detection rates where obtained on the mammogram images. False alarm rates were
sometimes excessive. All of the missed detections occurred in four of the mammograms:
c120, cl170, c19¢c, and c190. In all of the missed detections the microcalcifications were in
regions with low X-ray density (dark mammograms). Thus, X-ray density may be a factor
related to DSSA detection performance.

DSSA classification processing required on the order of 5-10 minutes on a SUN workstation
for each processed mammogram (each mammogram contained 2,048 x 2,048 = 4,194, 304
pixels). At most, 3,200 multiply-adds are required to classify each pixel of the mammogram.
The amount of memory required to store the DSSA templates is 241K of memory.

The experimental results of this research established that the use of a DSSA data represen-
tation for direct classification of mammogram pixel data is feasible.

14




2.3 Sidescan Sonar Images

Sonar Task 1: Data Acquisition—Completed

The U.S. Navy must be able to prepare potential amphibious assault areas (AAA) by de-
tecting and destroying enemy sea mines with autonomous underwater vehicles (AUV) and
tethered unmanned underwater vehicles. This includes the ability to search and secure proud
mines (mines which lie on the sea floor), buried mines, tethered mines, and drifting sea mines
which pose a threat to Navy craft and personnel. A technical goal of the Navy is to develop
the ability to conduct covert surveillance for classification and identification of all types of
enemy sea mines that may exist in the very shallow water (VSW) environment typical of
AAAs. The basic technical strategy adopted by the Navy to achieve these objectives and
capabilities is to employ a suite of long range magnetic, acoustic backscatter, and sonar
sensors. The overall research goal of the Navy is to develop autonomous systems that are
robust in a real underwater environment typical of VSW. The systems must deal with ex-
pected signal-to-noise ratios, specular scattering, and multipath propagation effects. Most
of all, the systems must provide sufficient performance levels to support human confidence
in the results of an autonomous and unmanned surveillance and preparation of a potential
AAA before Navy assets and personnel forces are permitted to enter the area to execute
Navy missions and assignments.

In order to reach a confidence level that is high enough to justify risk to human life, fu-
ture AUV systems may be required to relay data back to command stations for human
verification of autonomous detection decisions. GTRI proposes the use of DSSA for the inte-
gration of both onboard detection processing, and data compression for bandwidth efficient
communications to the base station.

GTRI has obtained side scan sonar images from CSS. Although this data has been evaluated
previously for DSSA classification performance, the DSSA algorithm has been refined under
GTRI internal research and development dollars. Thus GTRI plans to revisit this data set
within the context of classification reevaluation, and plans a new evaluation to quantify joint
DSSA classification/compression performance.

Sonar Task 2: Test Plan Definition—Completed

The Coastal Systems Station has previously suggested that the CSS sonar data be partitioned
into training and testing data subsets. GTRI will conform to the CSS recommendation to
allow comparisons with results obtained by other researchers.

Sonar Task 3: DSSA Implementation—Initiated

A sonar block size of 9 x 9 pixels was been tentatively selected for DSSA processing. Each
9 x 9 block contains a total of 81 pixels, where the 8-bit intensity value of each pixel may be
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viewed as providing a feature value in a composite 81-dimensional feature space.

Training blocks are currently being extracted from known target locations. Each training
block is being reflected along a horizontal axis to expand the size of the training set. The
training set currently contains 824 blocks.

Sonar Task 4: Template/Codevector Design—Initiated
Preliminary DSSA template/codevector sets have been designed to obtain a qualitative as-

sessment of performance. Currently, a 25-stage DSSA classifier, with each stage consisting
of 32 templates has been designed.

Sonar Task 5: DSSA Performance Evaluation—Initiated

Qualitative assessments have been performed to judge the suitability of the DSSA block
size selected in Sonar Task 1. Figures 2.5 and 2.6 at the end of this chapter show detec-
tion overlays of processed CSS sidescan sonar images that are completely analogous to the
mammogram overlays in Appendix A. The corresponding CSS image is not shown in this
report to prevent document distribution restrictions. Plans for completing Sonar Tasks 3-6
are given in the next chapter.

2.4 Synthetic Aperture Radar Images

SAR Task 1: Data Acquisition—Initiated

GTRI has identified and obtained an extensive set of SAR data with ground military targets.
However, GTRI has not yet received permission from the Army source to use these data in
this study. Plans for completing SAR Tasks 1-6 are given in the next chapter.

2.5 Acoustical Backscatter Signals

Backscatter Task 1: Data Acquisition—Completed

GTRI has obtained the CSS acoustic backscatter data set.

Backscatter Task 2: Test Plan Definition—Completed

GTRI has adopted the CSS acoustic backscatter test plan for classification purposes. This
test plan calls for the generation of synthetic clutter with synthesized SNR ratios for evalu-
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ation purposes. Plans for completing Tasks 3—6 are given in the next chapter.

2.6 Machine State Status Signals

Task 1: Data Acquisition—Completed

GTRI has obtained the NRaD condensate pump data.

Task 2: Test Plan Definition—Initiated

GTRI has developed a preliminary plan to process these data as a time series sequence, but
has not yet fully completed the plan. Suggestions given by Dr. Lake for processing these
data will be followed. Plans for completing Tasks 2—6 are given in the next chapter.

2.7 Infrared Images and Multispectral Images

GTRI has not yet obtained any infrared or multispectral images.
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EXAMPLE DSSA CLASSIFICATION RESULT
SIDESCAN SONAR IMAGE #si020074

DETECTION OVERLAY SHOWN ON NEXT PAGE

DSSA Classification Results
Number of Known Sea Mines = 2
Number of Computer-Detected Mines = 2
Number of Computer-Missed Mines = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 25
Number of DSSA Templates per Stage = 32
DSSA Template Size = 9x9

Figure 2.5: Classified sidescan sonar image overlay #si020074.
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EXAMPLE DSSA CLASSIFICATION RESULT
SIDESCAN SONAR IMAGE #si020079

DETECTION OVERLAY SHOWN ON NEXT PAGE

DSSA Classification Results
Number of Known Sea Mines = 1
Number of Computer-Detected Mines = 1
Number of Computer-Missed Mines = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 25
Number of DSSA Templates per Stage = 32
DSSA Template Size = 9x9

Figure 2.6: Classified sidescan sonar image overlay #si020079.
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Chapter 3

Conclusions and Future Research
Plans

3.1 Preliminary Conclusions

A novel feature of DSSA is that NN-RVQs can be designed such that the first stages op-
erate primarily on the easy-to-discriminate data and the latter stages deal with the more
challenging target-like clutter data. This approach has computational and theoretical advan-
tages. The computational advantage is that little signal processing effort is expended when
classification decisions are easily reached. The theoretical advantage is that latter NN-RVQ
stages can attempt to distinguish targets from target-like clutter and provide the necessar-
ily complicated decision surfaces in these challenging areas of the decision space. This fact
suggests that DSSA systems result in relatively simple classifiers and data compressors that
can be implemented onboard sensor platforms. Although these initial experimental results
support this conclusion, additional research will be performed for various sensors to further
investigated these possibilities.

The following sections outline research plans for the coming year for the different sensors of
interest.

3.2 Electro-Optical Images

GTRI would like to identify an EO image data base with a particular target of interest to the
Navy; however, as a fall back position, GTRI plans to use the Moffet image to demonstrate
that small targets such as airplanes on an airfield can be identified using the DSSA approach.
GTRI will use one half of the Moffet image as training data, and the other half as testing
data to generate this rather simple demonstration that can be used for illustration purposes.
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3.3 X-ray Images

GTRI plans no further work with X-ray images.

3.4 Sidescan Sonar Images

GTRI will complete the training set extraction process and generate a full set of templates for
the DSSA system. The performance of the joint classifier and compressor will be quantified
and extensive sample results will be included in the next interim performance report.

3.5 Synthetic Aperture Radar Images

GTRI will seek permission from the Army SAR data source for use of their data on this
project. GTRI is also interested in identifying other potential Navy sources for SAR data.

3.6 Acoustical Backscatter Signals

GTRI will continue acoustical backscatter processing during the coming year. A key issue is
whether the backscatter should be processed as a high resolution range profile of underwa-
ter targets, or processed with the intent of identifying resonances and other target-related
phenomenology. '

3.7 Machine State Status Signals

GTRI will actively pursue machine state data processing during the coming year.

3.8 Infrared Images and Multispectral Images

GTRI has contacted researchers at the Naval Research Labs (NRL) about possible collabo-
ration on NN-RV(Q classification of infrared and multispectral image data. Initial discussions
indicate that there would be significant synergism between GTRI's 6.1 and NRL’s 6.2 re-
search programs, this collaboration opportunity will be pursued during FY97.
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Appendix A

Mammogram Images and DSSA
Detection Overlays
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cllc

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = bx5

Figure A.1: Classified mammogram #cllc.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cllo

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 1

Number of Computer-Detected Clusters = 1

Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5X5H

Figure A.2: Classified mammogram #cllo.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl120

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 13
Number of Computer-Detected Clusters = 11
Number of Computer-Missed Clusters = 2

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5

Figure A.3: Classified mammogram #c12o.
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EXAMPLE DSSA CLASSIFICATION RESULT

MAMMOGRAM #cl13c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters =
Number of Computer-Detected Clusters =

—

Number of Computer-Missed Clusters = 0
DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5H

Figure A.4: Classified mammogram #cl3c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #-c130

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = b5x}

Figure A.5: Classified mammogram #cl3o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl4c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 2

Number of Computer-Detected Clusters = 2

Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = bHx5H

Figure A.6: Classified mammogram #cl4c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl4do

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 2
Number of Computer-Detected Clusters = 2
Number of Computer-Missed Clusters = 2

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5Hx5H

Figure A.7: Classified mammogram #cl4o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl5¢

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters =1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = HXx5H

Figure A.8: Classified mammogram #clbc.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #-cl150

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = b5x5

Figure A.9: Classified mammogram #c15o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl6e

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5Xx5H

Figure A.10: Classified mammogram #cl6c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #-cl6o

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 1

Number of Computer-Detected Clusters = 1

Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5H

Figure A.11: Classified mammogram #cl6o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl7c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 9
Number of Computer-Detected Clusters = 8
Number of Computer-Missed Clusters = 1

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5XDH

Figure A.12: Classified mammogram #cl7c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #c18c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 2

Number of Computer-Detected Clusters = 2

Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5X5H

Figure A.13: Classified mammogram #c18c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl180

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = b5x5H

Figure A.14: Classified mammogram #cl8o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #cl8e

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5HxDH

Figure A.15: Classified mammogram #cl8e.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #c19c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 2
Number of Computer-Detected Clusters =
Number of Computer-Missed Clusters =

—

—_

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5H

Figure A.16: Classified mammogram #c19c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #-c190

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 3

Number of Computer-Detected Clusters = 1

Number of Computer-Missed Clusters = 2

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5H

Figure A.17: Classified mammogram #c19o.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #c20c

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results
Number of Human-Detected Clusters = 1
Number of Computer-Detected Clusters = 1
Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings
Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5Xx5H

Figure A.18: Classified mammogram #c20c.
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EXAMPLE DSSA CLASSIFICATION RESULT
MAMMOGRAM #c21o

FIGURE WITH DETECTION OVERLAY SHOWN ON NEXT TWO PAGES

DSSA Classification Results

Number of Human-Detected Clusters = 1

Number of Computer-Detected Clusters = 1

Number of Computer-Missed Clusters = 0

DSSA Classifier Parameter Settings

Number of DSSA Stages = 37
Number of DSSA Templates per Stage = 64
DSSA Template Size = 5x5H

Figure A.19: Classified mammogram #c21o.
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Appendix B

DSSA and NN-RV(Q) Technical

Overview

This appendix gives a brief overview of the fundamental problem of detection theory and
explains the basic approach used by GTRI to develop the concepts of DSSA, which is the
fundamental technology upon which the NN-RVQ classifier is based.

Decision Systems

A decision system ascertains which of several possible hypotheses best estimates the state of
a sensed environment. Given measured data, for example, a decision system could provide
an answer to the following question. Does the environment contain a target or threat, or
does the environment contain only harmless clutter? The distinction between a target and
a threat depends on the application. The presence of a target usually requires an aggressive
response (e.g., in a dual-use medical application, tumor removal after positive diagnosis), and
the presence of a threat usually requires an evasive response (e.g., avoidance after hazard
detection in autonomous navigation systems). The clutter state almost always permits a
passive response.

The maximum performance attainable by a decision system is influenced by the following

three factors.

Factor 1: The intrinsic discriminability of the states of nature as determined by the phe-
nomenon being observed and the class-conditional measurement probabilities over the
observation space.

Factor 2: The quality and sensitivity of the sensor obtaining measured data from the ob-
servation space.

Factor 3: The allowable complexity of the decision system processing the measured data.
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The first factor is governed by nature and cannot be influenced by the system designer
(except, perhaps by the engineer’s choice of phenomenon for observation and measurement).
The second factor is determined by the state-of-the art in sensor technologies. The third
factor represents practical complexity constraints imposed on the implementation of the
decision system. In this research, the sensor is assumed to be a given, fixed system. The
problem of maximizing decision system performance for a given level of sensor quality and
a restricted level of tolerated complexity resides with the engineer and is the primary topic
of this research report.

Decision Spaces

The decision space is the set of all possible measurements on which classification decisions
could be based. The choice of which decision space to use for a particular application is
an issue associated with sensor selection, the classifier design problem, and the imposed
complexity limitations. The decision space could be the measured data space, a space as-
sociated with some set of features derived from the measured data, or, as is shown later in
this appendix, a space of coded representations of the measured data. Generally, one seeks
a decision space where data related to each class are clustered and the clusters associated
with the different classes are well separated.

Mathematically, a decision space is a subset X" of the k-dimensional real space X C RF or
complex space X C CF. A measurement x is a realization of a random vector X defined
over X. The dimensionality k£ of the x € X depends on the classification problem. In some
applications, each measurement @ = [z,z5 - - - zx]” is a vector, where the vector elements z;
are scalar features or measured samples (e.g., pixels in an image block); in other applications,
the decision space is a scalar space.

The random vector X is described by a (class-independent) probability density function
p(x). To introduce class-conditional nomenclature, let % = {H,, : m € M} be a collection
of M classes, where m is a class label, and M is the class label set. The class-conditional
probability density function p(x|H,,) describes the probability of measuring & when the
state of nature is H,,. The state of nature H,, occurs with an a priori probability P(H,,).
The a posteriori probability of the state of nature H,, after observation of a particular x is
P(H,,|z). From basic probability theory, the relationship

P(H,|z) = p(x|Hm)

p(x) P(Hn)

shows how the a posteriori probability P(H,,|z) of the state of nature H,, is related to the
a priori probability P(H,,).
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Decision Rules

A classifier is a rule that assigns each point in a decision space to a class that describes an
estimated state of nature (a hypothesis). To be more precise, a classifier is a mapping

K: X%

that associates a hypothesis K (x) = H,, with each z in X, where the set of all possible
hypotheses is denoted % = {H,,, : m € M},

An M-ary decision rule partitions the decision space into a collection of M equivalence sets
called decision regions, where all points in a particular decision region are assigned to the
same hypothesis. Each decision region is specified by the inverse image K~!(H,,) C X.

Joint Decision Rules

For future reference, note that the domain of a decision rule may be a Cartesian product
space. If this is the case, the classifier would be a joint decision rule defined by a mapping

K: X xXyx- X XprH,

where the composite decision space is formed by the Cartesian product of a set of individual
spaces X, with p € {1,2,..., P}.

A joint observation space may arise in applications involving sensor fusion or decentralized
observations from a collection of remote sensors, or, as is shown later in this appendix, in
combined estimation/quantization systems with product-code quantization structures. Sur-
prisingly, in combined estimation/quantization systems, the use of a joint observation space
is a simplifying feature that reduces the complexity of the nonparametric vector quantizer
models that represent class-conditional probability density functions.

Bayes Classifiers

One formulation of a decision rule is based on the minimization of the expected “risk”
or “cost” associated with classification errors, where specific costs are assigned to each of
the possible errors. For applications with only clutter and target classes, the following
cost assignments are appropriate; but first, let class labels be selected from the set M =
{T, C} such that Hr represents a target state, Hc a clutter state, and Hy and H represent
corresponding state estimates. Then, the following cost assignments are suitable for this
two-class case.

C (fIT|Hc) =Cy, The false alarm penalty associated with incorrectly classifying
clutter data as target data.
C(H¢|Hr) = Cpg The missed detection penalty associated with incorrectly classifying
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target data as clutter data.
C(H¢|He) = Ce The “cost” of correctly classifying clutter data.
C(Hy|Hrp) = Cr The “cost” of correctly classifying target data.

Because correct decisions usually incur no penalty, it is reasonable to assign Cc = 0 and
Cr=0.
With these cost assignments, the conditional false alarm risk for a given measured observation
T is

R(ﬁT!$) = CTP(Hle) + CfaP(Hclm),

= CrP(Hclx),

and the conditional missed detection risk is

R(Hclz) = CpeP(Hr|z)+ CoP(Holz),
More generally, for an arbitrary classifier K, the two-class conditional risk is given by

R (K|z) = C (K(x)|Hr) P(Hr|z) + C (K(x)|Hc) P(Hclz).
A Bayes classifier K* minimizes the conditional risk for each € X, i.e.,
K*(z) = arg min_ [R(I;’m|a:)] . (B.1)
HmeH
For the two-class case, the Bayes classifier can be reduced to a particularly simple form:
select the target hypothesis if
CmdP(HT|:B) > CfaP(Hc|£B),

else, select the clutter hypothesis. The associated minimum risk, or Bayes risk, is

R(K) = [ _, R | ) p(a)de,

_ : CroP(Hc|z)

— /a:eX {mml CooaP(Hrl) p(x)de.
The Bayes risk is a lower bound to the performance of all classifiers, i.e., R > R*. Hence, the
Bayes classifier is an optimal classifier from the perspective of minimum classification risk.

Bayes Classifier Complexity

A major drawback of the Bayes classifier is that in some cases it has a high level of imple-
mentation complexity. The root cause of this high cost is the complexity of the decision
region boundaries induced by Bayes rule (given by Equation (B.1)). If the decision regions
are not well behaved (e.g., if the K~1(H,,) C X are not connected nor convex subsets of X ),
then in general the implementation costs of the Bayes classifier are high.
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Decision Rule Implementations

Theoretically, a decision rule could be implemented for each and every point in the decision
space by labeling the € X with a class label. Such a (nonparametric) classifier would
function as a table lookup operation: each measurement & € X is a different index into the
classification table. Of course, a direct implementation of this approach would be impractical
if the number of points in the decision space is large (excessive memory requirements) and
impossible if the decision space is a continuum (infinite memory requirements).

In practice, decision rules are most often implemented by explicit characterization of the
decision region boundaries. This approach is possible if the boundaries have simple forms
(e.g., points, lines, hyperplanes, parabolas), which is most often the case with parametric
classification methods; however, and especially so for nonparametric classifiers operating in
high dimensional decision spaces, the decision region boundaries can be very complicated.
Complicated decision region boundaries lead to high implementation costs.

The high costs of nonparametric classifiers have led to the development of simpler but sub-

optimal decision rules. The definitions of these suboptimal decision rules are influenced by
a desire to restrict the structure of the decision region boundaries to simple implementable

forms. This is done by the imposition of structure to form parametric classifiers.

Nonparametric Modeling

When decision region boundaries are used to implement a decision rule, the complexity of
the classifier depends on the particular decision rule. The alternative (albeit impractical)
implementation approach of assigning class labels to every possible measurement does not
have this property. For a given observation space, all point decision rules are equally com-
plex: the forms of the decision regions do not add any additional complexity to the table
lookup classifier. This fact motivates the development of practical implementations of la-
beled point decision rules. The following describes two ways that a point decision rule can
be implemented by using nonparametric modeling techniques.

Nearest Neighbor Modeling

To develop a practical decision system that efficiently implements a point decision rule, let’s
assume for the moment that a (very complicated) table lookup system exists that is capable
of implementing any arbitrary point decision rule. Since its implementation complexity is
proportional to the number of points in the decision space, let’s reduce the complexity of
this system by reducing the number of points that must be explicitly dealt with by the
classifier. This can be done with a set of sample measurements and a nearest neighbor rule.
Class labels are first assigned to each measurement in the sample set, then the entire space
is implicitly classified via the nearest neighbor rule that maps all decision space points to the
closest measurement contained in the sample set. This approach is called nearest neighbor
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modeling.

The complexity of implementing a point decision rule with a nearest neighbor model is
proportional to the sample set size, since the entire sample set must be searched for each
sensor output that is to be classified.

Vector Quantizer Modeling

The performance of a nearest neighbor classifier increases as the number of measurements
included in the sample set increases, but so do implementation costs. The complexity of a
nearest neighbor classifier can be reduced by the use of vector quantizer (VQ) modeling. VQ
modeling is identical to nearest neighbor modeling, except that, instead of using distances to
sample measurements, distances to sample measurement representatives called codevectors
are used. A vector quantizer uses a smaller set of codevectors to represent the larger set of
measured samples. The set of codevectors is called a codebook. As before, the classification
assignment of the preclassified codevectors is implicitly extended to the entire decision space
with the use of a nearest neighbor rule.

Estimation and Quantization

This section examines the performance characteristics of estimation systems that use vector
quantizer codebooks for nonparametric modeling. The performance limits and complexities
of such systems are described. An understanding of this background material is essential for
an appreciation of the advantages of the approach adopted by GTRI for the development of
highly efficient and effective NN-VQ classifiers.

Vector Quantizers

The amplitudes of infinite precision points in X must undergo a many-to-one mapping to
form a set of quantized representatives for all points in a decision space. This may be
accomplished with the use of a vector quantizer which is a mapping @) : X — C of each =
in the continuous decision space X to a representation & selected from the discrete set C of
codevectors y(-). The set C = {y(-)} is called the vector quantizer codebook.

In practice, a vector quantizer is realized as a composition of two functions: the encoder
mapping £ : X — I and a decoder mapping D : T — C. The encoder is a many-to-one
mapping from X onto the discrete index set Z. The decoder is a one-to-one mapping from
7 onto the codebook C. Conventionally, and without loss of generality, the index set can
be assumed to be the set Z = {0,1,...,N — 1}, where N is the number of codevectors
contained in the codebook. The inverse image of each ¢ € Z defines a partition cell of the
quantizer input space; this cell is denoted S(i) = £71(i) C X. The collection of cells forms
the partition P = {S(i) : i € I} of the decision space X.
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The average distortion D of a vector quantizer is

D(Q) = E{d(X,Q(X))},

where E{-} is the expectation operator, and d(-,-) is a distortion or similarity measure.
The expected distortion is a quantitative measure of the “fidelity” of the representation
of X generated by the codebook C. Mean squared error, d(z,&)) = || — &||?, where
£ = Q(x) = y(7) for some ¢ € Z, is commonly used as a fidelity measure.

The rate of a vector quantizer with dimension k¥ and codebook size N is defined to be

T = %log2 N.
In general, a VQ must store and search the entire codebook to find the best match between a
measured observation and the set of codevectors. Thus, a vector quantizer’s implementation
complexity is proportional to its codebook size. Although the fidelity of a VQ codebook
increases with increasing N, in terms of dimension and rate, the codebook size and associated
VQ complexity increases exponentially with the product of rate and dimension, that is,
N = 2%,

Vector Quantizer Design Methods

The usual approach used to design VQ codebooks for data compression applications is called
the Linde, Buzo, and Gray (LBG) algorithm [2], or the Generalized Lloyd Algorithm (GLA)
[3]. The LBG algorithm is basically the same as the previously developed k-means algorithm
used for data clustering [4] and is based on the use of a set of sample measurements of the
observation space called a training set. The training phase is performed off-line to generate
a codebook that provides a good representation of the training set. Once a VQ codebook
has been obtained and the VQ codevectors have been preclassified by assigning class labels,
the codebook is used on-line to classify new measured observations via the nearest neighbor
rule.

Bayes Classification of Quantized Measurements

A quantized data classifier Ko can operate on the output of a quantizer by assigning a
class label to each codevector y(7) in the quantizer codebook C. Since a one-to-one decoder
mapping D associates a unique index ¢ € Z with each codevector y(-) € C, however, the
classifier K may also be defined on the index set Z of the quantizer, i.e., Kg : Z — #H. In
this case, note that Kq(i) = Kqo(&(x)), that is, the classifier classifies coded representations
of measured observations.

Let’s determine the relationship between a Bayes classifier that operates on quantized and
coded data and a Bayes classifier that operates directly on measured data. In the following,

48




assume without loss of generality that the set of class labels is the set M = {1,2,... ,M}.
The conditional risk of classifying the state of nature as H,, for a given x is

(Halz) = > C(Hn|Hy)P(H, ).

neEM

Next, given an arbitrary quantizer mapping @, consider all & such that E(x) = i, that is,
all  in the VQ partition cell S(i). The expected conditional risk for the quantized data
classifier when it is known that X € S(¢) is

Ro(Hnli) = E{R(Hn|X € 5())},
- /:ces(i)R( Hyl@)p(@)da,
B /:ces@') [Z C(ﬁmlH")P(an”)] p(z)dz,

nemM

= Y C(H,|H,) /m s PHlmp(@)de.

nemM
Hence,

nemM

where, by definition,

P(H,|i) = / P(H,|z)p(x)dz.
TeS(7)
For an arbitrary quantized data classifier K¢, the conditional risk is

nemM

The quantized data Bayes classifier minimizes the conditional risk for each i € 7,

K5 (i) = arg min [RQ(I:Imh)] .
HmeH

The associated minimum Bayes risk is

R(Kg) = 3 R(KQl)P(i),

The qyantized data classifier mapping induces a partition of Z into common class subsets
K5'(Hm) C T and also induces a partition of the codebook into subsets D(Kg'(Hm)) C C.
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Nearest Neighbor VQ Classifiers

Although imprecise VQ representations of measured data entail some loss of estimation
performance with respect to the use of exact observations, as the fidelity of the VQ repre-
sentation increases, it is reasonable to expect that the performance of the discrete system
will approach the performance of the ideal infinite precision system. More specifically, we
have seen that the conditional Bayes risk associated with an unquantized data classifier is

R (K"|e) = %C(K*(w)lHn)P(Hnlw),

and the conditional Bayes risk of a quantized data classifier is

Ry(Kgli) = %C(Ka(z')mn)P(Hnli),

where 7 is a VQ-coded representation of the measurement . These expressions are similar
in form, and they are similar in value, in that the associated unconditional risk R (Kg)
converges to R*(K*) in the limit as the number of codevectors N gets large, i.e., R — R*
as N — oo. Thus, a Bayes nearest neighbor classifier with VQ modeling can asymptotically
achieve the Bayes risk of an unquantized data classifier. But increasing the codebook size
also increases the computational speed, memory, and bandwidth requirements of the system
that implements the NN-VQ classifier.

One of the research objectives assigned to GTRI was the development of reduced complexity
classifiers. The complexity of a quantized data classifier is proportional to the number of
codevectors used by the quantizer; so, if a simpler NN-V(Q classifier is desired, one simpli-
fication method is to reduce the codebook size. Hence, the performance characteristics of
quantized data classifiers as the codebook size is reduced is also of interest.

An analysis shows that, if the number of codevectors is reduced but still remains “sufficiently
large,” then the expected risk of the nearest neighbor classifier is no worse than only twice
the classification risk of the Bayes classifier that operates on unquantized measurements
[5]. That is, Ry < 2R*. Thus, as long as the codebook is “large enough,” then NN-VQ
performance is guaranteed to be within the limits 2R* > Ry, > R*.

Since NN-VQ performance can (with appropriate VQ codebook design procedures) approach
the lower bound R* as N is increased, GTRI offers the following observation that may provide
an estimate for the codebook size that is required for RZ? to be close to R*.

A Note on NN-VQ Codebook Size

Ideal (but fictitious) sensors generate perfect measurements with absolute precision. With
infinitely precise measurements, it is possible for [z; ---zx]T and [(z1 + €) - -« (zx + €)]F to
provide substantially different classification information no matter how small € is, and thus
it is necessary to label each and every point in X’ to achieve Bayes risk. If measurements are
influenced by sensor and system noise, however, then there exists an uncertainty region about
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each measurement. The size of this uncertainty region varies as a function of the noise power
N.,. This implies that there exists a positive ex;, such that [z, - - - z]T and [(z1+e€) - - - (z2+€)]T
provide essentially the same amount of classification information whenever € < ex,. If a
decision space is bounded (has compact support), a question related to the required codebook
size is: how many uncertainty regions can be packed into a given decision space (assuming
that both the decision space and uncertainty regions have volume)? An answer to this
question may provide an estimate for the number of codevectors required to have Ry, close
to the Bayes risk R* of the noisy sensor system. A similar packing problem in communication
theory shows that, if the noise is additive white Gaussian noise, then

()

uncertainty regions can be packed into a k—dimensional spherical decision space [6], where
P, is the sensor power level. It is conjectured by the principal investigator that, for sensor
systems subject to noise, a codebook size in the neighborhood of of the value expressed by
(B.2) is sufficient for achieving a NN-VQ performance level that is close to the Bayes risk
obtainable with unquantized measurements. Unfortunately, this required codebook size can
be very large. For example, if the signal-to-noise ratio (SNR) is 20 dB and the dimensionality
of the observation space is 192, then

(B.2)

k
Ps 'i'-/\[s)5 SNR %
s T} = (10%0 +1
(F3) = ’
192
= (0% +1) 7,
~ 10192’

which is astronomically large. But as is shown below, there are ways to implicitly deal with
VQ structures where the equivalent codebook sizes are indeed very large.

VQ Implementation Complexity

Since VQ complexity is proportional to N = 2", the use of VQ modeling can also have
exorbitant implementation costs if the dimension or rate is large. There is, however, a
variant of VQ called residual vector quantization (RVQ) with complexity proportional to
the much simpler cost function 2 X kr but with an effective codebook size of N = kT,
Hence, RVQs offer implementation advantages in the application of VQ modeling for nearest
neighbor classification. For example, an astronomically large equivalent codebook size of
2192 codevectors can be designed and manipulated using a RVQ with a cost function that is
proportional to only 2 x 192 = 384.

RVQ modeling is the fundamental approach used by GTRI in the development of a nearest
neighbor residual vector quantizer (NN-RVQ) classifier. The innovative features of the NN-
RVQ permit a large number of codevectors to be efficiently and effectively used to model
class-conditional probability density functions. Details of the novel features of the NN-RVQ
are given next.
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Residual Vector Quantization

Vector quantizers are classified into two major categories: structured and unstructured.
Unstructured VQs give the best performance for a given rate and dimension, but their im-
plementation costs in terms of both computation and memory increase exponentially with
the product of rate and dimension. Structured VQs, on the other hand, give poorer perfor-
mance than an unstructured VQ for a given rate-dimension product, but they may actually
provide better performance for a given level of implementation complexity. Structured VQs
are further categorized as to whether the imposed structural constraints return computation
or memory savings, or both. One of the most important structurally constrained VQs which
reduces both memory and computational cost is a successive approximation VQ structure
called residual VQ [7, 8, 9].

Fixed Rate RVQ

A successive approximation residual vector quantizer consists of a sequence of relatively small
VQ stages, where each stage encodes the residual error of the prior stage. That is, after the
first stage VQ, a residual vector is formed by subtracting the codevector selected from the
first stage codebook from the original input vector. The second VQ stage then finds the best
match in its codebook of “residual” codevectors and outputs the corresponding index. This
process is repeated on the residuals formed from the second stage and so forth for a total of
P stages. The P-tuple of indices output by the multiple stage RVQ encoder is transmitted to
the RVQ decoder where table lookups are performed in corresponding reconstruction stage
codebooks. The decoder output set of stage codevectors are vector summed to produce the
RVQ representation of the original input vector.

To be more mathematical in our description, the pth stage of an RVQ is a k-dimensional
vector quantizer defined by the mapping @, : X — C,, where

e pc{l,2,...,P} is the stage indez,
o Cp={y,(0),y,(1),...,y,(Np, — 1)} is the pth stage codebook,
e y,(ip) € X are pth stage codevectors, and

e i, is an indez in the pth stage indez set I, = {0,1,... ,N, — 1}.

Residual quantizer stage mappings are collectively equivalent to a single stage mapping
Q: X — C, where

e C is the direct sum codebook {y(i) : i € I},
e y(i) is a direct sum codevector y(i) = y,(41) + y5(i2) + -+ - + yp(ip), and

e i=(iyip---ip) is a P-tuple indez contained in I =I; x I, x --- x Ip.
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' The direct sum codebook is the direct sum of the stage codebooks, C = C1+Cy+---+Cp.

Variable Rate RVQ

Variable rate RVQ is a type of RVQ where different numbers of stages are used on different
input vectors. Variable rate RVQ has certain efficiency advantages in the application of
RVQ to data compression. In the sonar image classification problem, variable rate RVQs
allow greater flexibility in generating RVQ codebooks for nonparametric modeling of class-
conditional probability density functions. The variable rate codebook structure allows the
RVQ codevector density in the decision space to vary to more accurately model the charac-
teristics of the class-conditional probability density functions.

One way variable rate RVQ can be accomplished is by determining the energy of the residual
vector between the RVQ stages. For example, comparative decision blocks can be be placed
between the RVQ stages. A predetermined threshold value associated with each decision
block and the corresponding input vector energy level at that stage can be compared to
determine whether the following stage is used to encode the input vector. This approach
permits various performance-complexity trade-offs to be controlled. By designing a large
number of RVQ stages beforehand and then using only a smaller subset of stages in practice,
one can prevent the complexity of the classification system from becoming too large. Variable
rate RVQs also permit different stages to be used to encode different input vectors with
varying energy levels. Various approaches for designing the variable rate RVQ decision
thresholds are described in References [10, 11}.

RVQ Complexity

Residual vector quantizers are subject to two structural constraints: a sequential search en-
coder constraint and a direct sum codebook constraint. The purpose of the sequential search
encoder constraint is to reduce computation requirements. The purpose of the direct sum
codebook constraint, which is imposed at both the RVQ encoder and decoder, is to reduce
memory requirements. As a result, the composite RVQ structure returns both computation
and memory savings over single stage full search vector quantizers (VQs), and memory sav-
ings over tree structured VQs [2]. For example, if a k-dimensional RVQ with output rate
r bits per sample consists of P stages with N = 2k7/P codevectors in each stage codebook,
then the memory and computation costs of the RVQ are proportional to

Complexity ~ P2*/P

whereas the memory or computation cost, or both, of most other VQ structures (with the
same equivalent codebook size) is proportional to

Complexity ~ 2F.

For example, if P = 128 and N, = 32, then the complexity of the RVQ is proportional
to 4096. The complexities of the other VQ structures with the same equivalent codebook
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sizes are proportional to 2640, which is a cost level requirement impossible to realize, or even
imagine!

Most of the implementation efficiency of an RVQ over a full search VQ is obtained in going
from one stage to two stages. The most efficient (in terms of memory and computation)
RVQs are those with two or four codevectors per stage (the associated implementation costs
are the same in both cases and are proportional to 2P for the two codevector case). Most
empirical evidence, however, suggests that RVQs with many stages can be expected to give
unsatisfactory performance [2]. These poor results for RVQs with many stages have proven,
at least for some sources, to be more a result of the design method used to generate the
stage codebooks and not necessarily inherent in the RVQ structure itself. The next section
describes various methods used by GTRI to design RVQ codebooks and how previous re-
search conducted by GTRI [9, 12, 13, 1, 10, 14] has improved the performance of RVQs when
applied to the data compression problem.

RVQ Design

The following paragraphs describe the history of some problems encountered when multiple
sets of vector quantizer codebooks were first designed for application to the RVQ data com-
pression problem and how research pioneered by GTRI has solved many of these problems.

Single Stage VQ Codebook Design

In 1980, Linde, Buzo, and Gray [3] generalized Lloyd’s Method I [15] for scalar quantizer
design to develop a vector quantizer design algorithm, known variously as the LBG or Gen-
eralized Lloyd Algorithm (GLA). Although very similar, there is a significant difference
between Lloyd’s Method I and the GLA. Lloyd’s method requires an analytically specified
probability density function to describe the data source; but for many data sources encoun-
tered in practice, the multidimensional probability density function is either unknown or
is not easily specified analytically. The GLA circumvents this difficulty by substituting a
training set for the probability density function. This substitution is proven in the limit of
large training set size to produce asymptotically equivalent designs [16].

Lloyd’s Method I and the GLA are based on the principle of iteratively finding an optimal
encoder for a fixed decoder and, vice versa, finding an optimal decoder for a fixed encoder.
This approach is based on a more general design principle used to design both data com-
pression systems and k-means classification systems [17, 18, 19, 20, 5]. Use of this method
requires optimality conditions for the encoder and decoder when the other is held fixed. Let
Og represent a rule that is used to optimize the encoder when the decoder is held fixed, and
let Op represent a rule that is used to optimize the decoder when the encoder is held fixed.
A general design procedure for determining encoder/decoder pairs that satisfy necessary
conditions for optimality is as follows [18]:
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GENERAL ITERATIVE DESIGN PROCEDURE

1. Select and hold fixed an initial decoder.

For the fixed decoder, use O to select an optimal encoder.

AN

For the fixed encoder, use Op to select an optimal decoder.

4. Compute the average distortion of the resulting code. If the average distortion falls below
some predetermined value, or the relative change (from the previous iteration) in average
distortion falls below some predetermined threshold, then STOP; otherwise, continue with
step (2).

Steps (2) and (3) of the iterative design procedure only reduce or leave unchanged the
average distortion. Since the distortion is bounded from below by zero, the monotonically
nonincreasing sequence of distortion measures converges to a fixed point [21].

Using this design principle, one can describe the GLA as follows. Let 7 = {1, z2,... , 21}
be a training set of L sample vectors, where each sample vector z; is drawn according to
a probability density function p on R*. The GLA improves (in the sense of reducing the
average distortion) a vector quantizer for the training set 7. The GLA starts with some
initial codebook and then iterates by first replacing the codebook with the centroids of
the training set vectors that are in each of the partition cells (this rule provides Op). The
algorithm then determines a new partition by a nearest-neighbor mapping of the training set
to the new codebook of centroids (this rule provides Og), and the entire process is repeated
until a stopping criterion is satisfied.

Multiple Stage RVQ Codebook Design

The first method suggested for designing RVQs was sequential application of the GLA [7].
That is, the GLA is applied to design the first stage codebook, and this codebook is held
fixed and used to form a set of residual training data for the second stage. The GLA is then
applied to design the second stage codebook, and so on until all RVQ codebooks have been
created. Although it has been shown that this greedy, sequential use of the GLA is nearly
optimum for two-stage RVQs with moderated to high output rates [22], it is widely recognized
that this design method is increasingly suboptimal as the number of stages increases. This
phenomenon has resulted in sequential GLA-RVQs being limited in practice to only two or
three stages [8, 2].

In Reference [1], necessary conditions for the joint optimality of RVQ stage codebooks were
derived. Given necessary conditions for the optimality of RVQ encoders and decoders, appli-
cation of the GLA design approach described above to design RVQs is straightforward (if the
complexity of optimal encoding is tolerated). The difference, however, between the GLA for
single stage quantizers and a similar algorithm for multiple stage RVQs is that there must be
two interlaced iterative fixed point procedures: one for optimization of the encoder/decoder
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pair, and another to simultaneously satisfy a certain conditional mean or centroid condition
for all RVQ stages. In the second iterative procedure, each stage codebook is optimized
while holding the codebooks of all other stages fixed. The new codevectors of the optimized
stage satisfy the necessary centroid condition with respect to the fixed partitions and the
fixed codebooks of the other stages. The codevector update procedure is then repeated for a
different stage; however, the process of optimizing the codevectors of a different stage causes
the first stage that was optimized to no longer satisfy the centroid condition. It is necessary
to eventually return to each stage and repeat the process in round robin fashion. Since
the changes made to the codebooks of each stage can only decrease or leave unchanged the
average distortion of the RVQ (assuming a constant fixed partition), this iterative procedure
converges to a fixed point. After this first fixed point has been reached (or approached suf-
ficiently close), a new encoder/decoder iteration is performed (a new partition is selected),
and the entire process is repeated until both processes converge to fixed points.

The approach to joint GLA RVQ design encounters some difficulties when the complexity
of optimal (exhaustive) encoding is not tolerated. Optimal sequential search partitioning
for an arbitrary set of direct sum codebooks often requires stage decision regions that are
not connected or convex, while efficient sequential search encoders generally require well
behaved stage partition cells. Proceeding with the joint design process with suboptimal
encoding rules can lead to nonmonotonic design behavior, and occasionally, catastrophically
poor performance results, especially if the RVQ has a high output rate or many stages.

These problems have led to the acceptance of various ad hoc procedures to stabilize the
design process. For example, a “block” approach to joint RVQ optimization can be used.
That is, only a subset of the RVQs are jointly optimized before proceeding to the next block
of stages in the RVQ. This method was used to generate the RVQ codebooks discussed in
References [11, 23, 24, 25]. As another example, if an increase in distortion does occur, the
design process can be terminated without recourse [26]. Other researchers have proposed a
“fuzzy” approach to sequential search encoder optimization [27].

Another ad hoc, but in some ways, more fitting approach to solving this design problem
is the use of separate, and in general, different stage codebooks at the RVQ encoder and
decoder [10, 14]. Direct sum encoder codebooks should be designed to give good sequential
search performance. Direct sum decoder codebooks should be designed to satisfy conditions
necessary for joint optimality. A design method for RVQ is required that is capable of
providing separate encoder and decoder codebooks, but where the two sets of codebooks
work together to provide good overall RVQ performance. Such a design method is described
in detail in Reference [28].

This prior extensive work in RVQ codebook design has led to the development of very stable
design procedures that permit RVQs with many, possibly hundreds of, stages to be designed
and implemented.
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Appendix C

List of Abbreviations

This list provides expansions for abbreviations and acronyms used in this report.

Abbreviation/Acronym Explanation

AAA
AUV
CAD
DSSA
EO
GTRI
IR

MS
NCCOSC
NRaD
NSWC
ONR
PACS
PI
SAR
RVQ
UAV
Uuuv
vQ
VSW

Amphibious Assault Areas

Autonomous Underwater Vehicles

Computer Assisted Detection

Direct Sum Successive Approximation
Electro-Optical

Georgia Tech Research Institute

Infrared

Multispectral

Naval Command, Control, and Ocean Surveillance Center
Research, Development, Test & Evaluation Division
Naval Surface Warfare Center

Office of Naval Research

Picture Archival System

Principal Investigator

Synthetic Aperture Radar

Residual Vector Quantization

Unmanned Aerial Vehicles

Unmanned Underwater Vehicles

Vector Quantization

Very Shallow Water
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